The generator matrix 1 0 1 1 1 X^2+X 1 1 X^2 1 X 1 1 1 0 1 1 X 0 X 1 1 1 1 1 0 1 1 X 0 1 1 1 1 1 0 X^2 1 1 X 1 1 0 1 1 X^2+X X^2+X+1 1 0 X+1 1 X 1 X^2+1 1 0 1 X^2 1 1 1 1 X+1 X+1 X^2+X X X^2 1 X 1 1 1 X^2 X^2+X+1 X+1 X+1 X^2 X X X^2+X 0 X^2 1 X^2+X 0 0 X 0 X^2+X 0 X^2+X X^2 X X X^2+X 0 X 0 X^2 X 0 X^2+X X^2+X 0 X 0 X^2 X X X^2 X X X^2+X X^2 0 X X^2 X^2 X^2+X X X^2+X 0 0 X^2+X X^2+X X^2 0 0 0 X^2 0 0 0 X^2 X^2 0 0 0 0 X^2 X^2 X^2 0 X^2 0 X^2 0 X^2 0 X^2 0 0 X^2 X^2 0 X^2 X^2 X^2 X^2 0 X^2 0 X^2 X^2 X^2 0 X^2 X^2 0 0 0 0 X^2 0 0 0 0 0 X^2 X^2 0 X^2 0 X^2 X^2 X^2 0 0 X^2 0 X^2 0 X^2 X^2 0 X^2 X^2 0 0 X^2 X^2 X^2 X^2 0 X^2 0 X^2 X^2 X^2 X^2 0 0 0 0 0 X^2 0 0 0 X^2 0 X^2 0 0 X^2 0 X^2 X^2 X^2 0 0 0 0 X^2 0 X^2 0 X^2 X^2 X^2 X^2 0 X^2 0 X^2 0 0 X^2 0 X^2 0 X^2 0 0 0 0 0 0 X^2 0 X^2 0 0 0 X^2 0 0 X^2 X^2 0 X^2 0 X^2 X^2 0 0 0 X^2 0 0 X^2 X^2 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 generates a code of length 42 over Z2[X]/(X^3) who´s minimum homogenous weight is 36. Homogenous weight enumerator: w(x)=1x^0+161x^36+116x^37+386x^38+312x^39+481x^40+332x^41+610x^42+368x^43+424x^44+300x^45+298x^46+88x^47+113x^48+20x^49+46x^50+31x^52+4x^54+5x^56 The gray image is a linear code over GF(2) with n=168, k=12 and d=72. This code was found by Heurico 1.16 in 1.04 seconds.